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Sorting single events: Mean arrival times ofN random walkers

Julia Dräger and Joseph Klafter
School of Chemistry, Tel-Aviv University, Tel-Aviv, Israel

~Received 23 April 1999!

Using a scaling approach we investigate the first passage time^m1,N(r )& for the first out ofN identical
independently diffusing particles in ordered and disordered structures. For Euclidean spaces we obtain
^m1,N(r )& in terms of a series in (lnN)21, independent of dimension. In the case of disordered ramified fractals

^m1,N(r )& is expressed in terms of a series in (lnN)(12dw
l ), wheredw

l describes how the mean topological
distancê l (t)& evolves with timet. We propose a scaling behavior for the related quantitySN(t), the number
of distinct sites visited by N particles. We verify our predictions by numerical simulations.
@S1063-651X~99!10612-3#

PACS number~s!: 05.40.Fb, 05.60.Cd, 47.53.1n
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Modern experimental techniques enable looking in
single events in many, yet finite, particle systems@1–3#. In-
stead of considering ensemble averages over the partic
ing particles, processes involvingsingle particles or afinite
number of particles have become of increasing interest.
possibility of sorting single particle events out of an e
semble allows a better understanding of particle dynamic
a level of detail which is usually burried under the statisti
averaging.

Here we propose the applicability of the concept of me
first passage times to the observation of single part
events. The mean first passage time~MFPT! is the time that
a particle needs, on average, to reach a given distancer for
the first time. When considering a finite initial number o
particles,N, one is led to the problem of the mean arriv
time ^m j ,N(r )& of j out of N particles. Of particular interes
are the statistical properties of^m1,N(r )& which describes the
mean first passage time of the first out ofN particles.
Namely, instead of an ensemble average overN, we focus on
a single particle out of theN participating particles, average
over many configurations.

In the case of independent particles the MFPT^m1,1(r )& is
related to the average of the sorted events^m j ,N(r )&,
^m1,1(r )&5(1/N)( j^m j ,N(r )&. Therefore, obtaining informa
tion on the different̂ m j ,N(r )& provides insight into the in-
dependent contributions of the individual events to
MFPT @4#.

Earlier studies of the properties of$^m j ,N(r )&%, based on
solving the diffusion equation with absorbing boundari
were done for one-dimensional systems@5#, and using renor-
malization approach for deterministic fractals@6#. In what
follows we generalize the problem and provide a formulat
which is independent of the underlying environement. W
exemplify our approach by using random walk trails, s
avoiding walk structures, and percolation clusters at critic
ity, the latter being characterized by complicated structu
having loops and dangling ends. It has been shown
transport properties on percolation can be treated con
niently in terms of the topological distance@7,8#. The topo-
logical distancel is defined as the length of the shortest pa
connecting two sites on a fractal that are separated by
Euclidean distancer. It scales with the Euclidean distancer
PRE 601063-651X/99/60~6!/6503~4!/$15.00
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as l ;r dmin. The relevance of the topological metricl for
percolation clusters stems from the fact that the fluctuati
of the probability density on sites at a fixed Euclidean d
tance r from the origin are large, but are negligible whe
considered at fixed topological distancel @8#. For transport
properties one applies the anomalous diffusion exponendw
defined by the time dependence of the root mean square
placement,A^r 2(t)&;t1/dw. When the topological distance i
considered we expect the exponentdw

l 5dw /dmin , which
characterizes how the mean topological distance^l (t)&
;t1/dw

l

evolves with time, to enter. Another quantity which
related to the mean arrival time of the first out ofN walkers
^m1,N(r )& is SN(t), the number of distinct sites visited by th
N random walkers during timet, a quantity that relates to a
broad range of phenomena~see e.g.@9#!. SN(t) is also ex-
pected to be characterized by the exponentdw

l .
In this paper we derive the dependence of^m1,N(r )& and

of SN(t) on N and show that they are characterized by t
exponentdw

l . Our results are relevant to those cases wh
single events can be observed, especially if the particles
ger some process when arriving at a trap or a sensor
addition, the dependence of the observablesSN(t) and
^m1,N(r )& on dw

l emphasizes the importance of the concept
topological space in investigating transport properties on p
colation.

Let us assumeN independent diffusing particles in a Eu
clidean space. Then a length scaler c(N) is imposed on the
system. Forr !r c(N) the mean arrival timêm1,N(r )& should
scale according to@10#

^m1,N~r !&5r /v, ~1!

where in a discrete systemv is the ratio of a length given in
terms of the lattice constant and the corresponding elem
tary step time unit. Equation~1! follows from the assumption
that among a sufficiently large number of random walk
one can find on average one walker which reaches the
tancer unscattered@10#. In the continuum descriptionv en-
ters by assuming a finite velocity which is given by ratio
mean free path and the averaged scattering time. For
@r c(N),

^m1,N~r !&5g~N!r 2, ~2!
6503 © 1999 The American Physical Society
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which follows from the general solution of the diffusio
equation wherer plays the role of distance between the~ab-
sorbing! boundaries@5#. The critical distancer c(N) for
d-dimensional Euclidean space is obtained in a straight
ward way from calculating the probability of findingone
random walker that travels the distancer c(N) in time t
5r c(N)/v,

1

N
5~k/bc!P~r ,t !ur 5r c(N),t5r c(N)/v

5
l0

„br c~N!…(12d/2)
exp@2br c~N!#, ~3!

whereP(r ,t) is the probability density to be at distancer at
time t andb5v/D. The factork/bc is the unit length of the
system expressed by the diffusion constantD, the velocityv,
and a numerical constantk of order 1. The normalization
condition *P(r ,t)dr51 for a fixed t yields l0
52k/G(d/2). In order to derive the critical distancer c(N),
we now define in Eq.~3!,

r[~l0N!215tae21/t, ~4!

with a512d/2 and t5„br c(N)…21. Since r increases
monotonically witht andr(t→0)→0, we obtain, by taking
the logarithm of Eq.~4!,

t~r!5@ ln~1/r!1j~r!#21, ~5!

where j(r), to be discussed below, obey
limr→0j(r)/ ln(1/r)50. Being interested in the behavior o
j(r) for r;0 ~corresponding toN@1), we can expand
j(r) in a series, by substituting Eq.~5! in Eq. ~4!. This leads,
in second order, to

j~r!.2a ln@ ln~1/r!#H 12
a

ln~1/r!J . ~6!

Substituting Eq.~6! into Eq. ~5! yields

r c~N!5„bt~r!…21.b21S ln~1/r!2a ln@ ln~1/r!#

3H 12
a

ln~1/r!J D . ~7!

In order to satisfy both scaling regimes in Eqs.~1! and~2! we
assume that̂m1,N(r )&5„r c(N)/v…f (r /r c(N)) with f (x)5x
for x!1, and f (x)5x2 for x@1. Accordingly, for r
@r c(N),

^m1,N~r !&5„r c~N!v…21r 2. ~8!

Inserting Eq.~7! into Eq. ~8!, expanding the result into a
series and taking into account Eq.~4! yields
r-

^m1,N~r !&5
D21r 2

ln~l0N! S 11
a lnln~l0N!

ln~l0N!

1
a2

„ln ln~l0N!2 ln2 ln~l0N!…

ln2~l0N!
1••• D .

~9!

To zeroth order the arrival timêm1,N(r )& becomes

^m1,N~r !&.
D21r 2

ln~l0N!
, ~10!

which in the one-dimensional case reproduces earlier res
@5#.

We now extend the approach to the case where the m
ment of the random walker is constrained to geometrica
disordered structures such as random walk trails, self av
ing walk structures, and percolation clusters at criticali
Figure 1 presents a series of the arrival times ofN550 par-
ticles diffusing on a percolation cluster at criticality from a
origin to a distancer. Averaging a set of such time series fo
a given j leads to the observablêm j ,N(r )&. Since our deri-
vation is based on the concept of the topological space
addition to percolation we consider, as examples for the
evance of the topological distancel , topologically linear
fractals such as trails of a random walk, where only sequ
tially created sites on the trail are considered connected,
self avoiding walk structures. The fractal dimension of t
shortest path isdmin51/2 for random work trails,dmin53/4
for self avoiding walk structures, anddmin.1.35 for perco-
lation in d53 @7#. The probability density for a particle to b
located at timet at a topological distancel from its starting
point is asymptotically given by@7,8#

P~ l ,t !5P~0,t !l dl 21exp@2„l /L~ t !…d l #. ~11!

Here dl is the topological distance exponent,d l 5dw
l /(dw

l

21), and L(t)5(D l t)1/dw
l

is proportional to the mean
chemical distancê l (t)& @7#. For the linear casedl 51,
dw

l 52 so that Eq.~11! reduces to a Gaussian. Following o
earlier argument we now derive the mean arrival tim
^m1,N(l )& in topological space. We first obtain the critic
topological distancel c(N) that divides the scaling behavio
of ^m1,N(l )& into two scaling regimes. We calculate th
probability of finding one out of the set ofN random walkers
that arrives at the topological distancel c(N) during time t
5l c(N)/v l ,

FIG. 1. Time series of the arrival timeŝm j ,N(r )&, j
51, . . .,50, of N550 particles from a starting point on a thre
dimensional percolation cluster at criticality to distancer 515.
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1

N
5~kp /bp!P~ l ,t !u l 5l c(N),t5l c(N)/v l

5
lp

„bpl c~N!…(12dl /d l )
exp@2bpl c~N!#, ~12!

wherelp5kpd l /G(dl /d l ), bp5(v l /D l )d l /dw
l

, andkp /bp
is the unit length in the system expressed by the diffus
constantD l , the velocityv l , and a numerical constantkp of
order 1. As for the Euclidean case the velocityv l is defined
by the ratio of the mean free path and the mean time betw
collisions. If we introduce new variablestp5„bpl c(N)…21

and ap512dl /d l , Eq. ~12! can be rewritten asrp

[(lpN)215tp
ape21/tp. In an analogous way to Eqs.~4!–~7!

we obtain

l c~N!5bp
21S ln~1/rp!2apln@ ln~1/rp!#H 12

ap

ln~1/rp!
J D .

~13!

Since we expect^m1,N(l )&5l /v l for l !l c(N) and

^m1,N(l )&5gp(N)l dw
l

for l @l c(N) we require^m1,N(l )&
5„l c(N)/v l …f p„l /l c(N)… with f p(x)5x for x!1 and

f p(x)5xdw
l

for x@1. For l @l c(N) this yields the scaling
relation

^m1,N~ l !&.„l c~N!12dw
l

/v l …l
dw

l

. ~14!

From Eq.~13! the arrival time^m1,N(l )&, to order zero and
for fixed topological distance, becomes

^m1,N~ l !&.
D l

21l dw
l

„ln~lpN!…dw
l

21
. ~15!

For linear fractals Eq.~15! is the same as Eq.~10! with d
51 and withr replaced byl . In order to derive the arriva
time in Euclidean space we denote byf(l ur ) the probability
that two sites on the fractal that are apart by a Euclid
distancer are separated by the topological distancel . The
mean arrival timê m1,N(r )& for a fixed Euclidean distancer
can now be calculated by the convolution

^m1,N~r !&5E ^m1,N~ l !&f~ l ur !dl . ~16!

The distribution functionf(l ur ) of l for fixed r is given by

f~ l ur !5
C1

l
FS r

l 1/dmin
D with F~x!5xgexp@2C2xd#,

~17!

with d5dmin /(dmin21), g.1.35 andC2.0.8 for percola-
tion in d53 @11#. The constantC1 is given by the normal-
ization condition *f(l ur )dl 51 yielding C15@(dmin

21)C2
g/dG(g/d)#21. Inserting Eqs.~15! and ~17! into Eq.

~16! and performing the substitutiondl →dx with x
5r /l 1/dmin yields

^m1,N~r !&5„l c~N!12dw
l

/v l …Kr dw, ~18!
n

en

n

with K5C2
dw /d

G„(g2dw)/d…/G(g/d) which is numerically
of order 1. The comparison of Eqs.~14! and~18! reveals that
the arrival times for fixedl and for fixedr show the sameN
dependence. This is demonstrated in Fig. 2 where the
merical results of our simulation of^m1,N(l )& and^m1,N(r )&
are plotted logarithmically versus lnN and show the same
slope. The explicitN dependence of the mean arrival times
therefore determined by the anomalous diffusion expon
dw

l in topological space and not by the exponentdw @6#. The
latter result does hold for the Sierpinski gasket wheredmin

51 and thereforedw
l 5dw .

Finally, we use Eq.~14! to derive an asymptotic expres
sion for the numberSN(t) of distinct sites visited byN inde-
pendent diffusing particles on a random self similiar stru
ture. We argue that the mean longest Euclidean dista
RN(t) reached by any of theN independent random walker
during time t should be proportional to the distancer at
which the first out of theN walkers arrives at timet
5^m1,N(r )& @6#. According to Eq.~18! this leads toRN

dw(t)

;tl c(N)(dw
l

21).t lndw
l

21(lpN). Since the trail of a random
walk is compact for media with spectral dimensionds

52dl /dw
l ,2 @12#, as it is the case for percolation ind52

andd53, the number of distinct visited sites,SN(t), scales
asSN(t)5RN

df(t), so that

SN~ t !;~ ln lpN!(ds/2)(dw
l

21)tds/2. ~19!

The numerical results of our simulation forSN(t) on three-
dimensional percolation clusters are shown in Figs. 3 an
While Fig. 3 shows the data in an unscaled form for differe
values ofN, the data collapse in Fig. 4 strongly supports t
scaling behavior given by Eq.~19!.

FIG. 2. Double logarithmic scaling plot of the mean first pa
sage time for the first out ofN diffusing particles,̂ m1,N(r )&, on a
three-dimensional infinite percolation cluster at criticality. Show
are ^m1,N(r )& for Euclidean distancesr 515 ~squares! and r 520
~filled circles! with dw.3.55, and̂ m1,N(l )& for chemical distances
l 540 ~filled squares! and l 560 ~circles! with dw

l .2.67. The
slope.1.62 is in good agreement with Eqs.~15! and~18!. The data
for the fixed chemical distances have been shifted up.
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In summary, we have introduced expressions for the m
arrival time of the first out ofN independent random walker
^m1,N(r )& in ordered and in disordered systems. This qu
tity should be closely related to experiments which are a
to follow single events in many particle systems. We ha

FIG. 3. Number of distinct sitesSN(t) visited by N random
walkers on a three-dimensional infinite percolation cluster at c
cality. Plotted is ln„SN(t)… versus ln(t) for N516 ~circles!, N527

~filled squares!, N5210 ~filled circles!, N5213 ~triangles!, and N
5216 ~squares!.
v.
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also derived the mean numberSN(t) of new sites visited in
such systems. Botĥm1,N(r )& andSN(t) are characterized by
the anomalous diffusion exponentdw

l in topological space.

We thank Arik Bar-Haim and Shlomo Havlin for fruitfu
discussions. The support of the German Israeli Founda
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i-
FIG. 4. The same data as in Fig. 3 but in a scaling form acco

ing to Eq.~19! with g[(ds/2)(dw
l 21). The data collapse and th

slope.0.68 support Eq.~19!, sinceds.1.38 for the critical perco-
lation in d53 @7#.
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