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Sorting single events: Mean arrival times ofN random walkers
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Using a scaling approach we investigate the first passage(img(r)) for the first out ofN identical
independently diffusing particles in ordered and disordered structures. For Euclidean spaces we obtain
(min(r)) interms of a series in (IN)~%, independent of dimension. In the case of disordered ramified fractals
(min(r)) is expressed in terms of a series in I(\I)ﬁl"m, whered‘,/V describes how the mean topological
distance(/(t)) evolves with timet. We propose a scaling behavior for the related quaift), the number
of distinct sites visited by N particles. We verify our predictions by numerical simulations.
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Modern experimental techniques enable looking intogs /~r9min, The relevance of the topological metic¢ for
single events in many, yet finite, particle systeibs3]. In-  percolation clusters stems from the fact that the fluctuations
stead of considering ensemble averages over the participadf the probability density on sites at a fixed Euclidean dis-
ing particles, processes involvirgingle particles or dfinite  tancer from the origin are large, but are negligible when
number of particles have become of increasing interest. Theonsidered at fixed topological distance8]. For transport
possibility of sorting single particle events out of an en-properties one applies the anomalous diffusion expodgnt
semble allows a better understanding of particle dynamics atefined by the time dependence of the root mean square dis-
a level of detail which is usually burried under the statisticalplacement,/(r?(t))~t*. When the topological distance is
averaging. considered we expect the exponedﬁzdwldmm, which

Here we propose the applicability of the concept of mearcharacterizes how the mean topological distake&t))

first passage times to the observation of single particle-t1/d, evolves with time, to enter. Another quantity which is
events. The mean first passage ti(MFPT) is the time that related to the mean arrival time of the first outNfwvalkers
a particle needs, on average, to reach a given distafioe (4, (r)) is Sy(t), the number of distinct sites visited by the
the first time. When considering a finite initial number of N random walkers during timg a quantity that relates to a
particles,N, one is led to the problem of the mean arrival broad range of phenomeriaee e.g[9]). Sy(t) is also ex-
time (u; n(r)) of j out of N particles. Of particular interest pected to be characterized by the exporﬂ.{pt
are the statistical properties ¢f; y(r)) which describes the In this paper we derive the dependencg af \(r)) and
mean first passage time of the first out Nf particles. of Sy(t) on N and show that they are characterized by the
Namely, instead of an ensemble average ®&ere focus on exponentd\',/v. Our results are relevant to those cases where
a single particle out of thbl participating particles, averaged single events can be observed, especially if the particles trig-
over many configurations. ger some process when arriving at a trap or a sensor. In
In the case of independent particles the MRRIL o(r)) is  addition, the dependence of the observab&gt) and
related to the average of the sorted evefis n(r)), (min(r))on dv/v emphasizes the importance of the concept of
(m1,4(r))=(1N)Z;(uj n(r)). Therefore, obtaining informa- topological space in investigating transport properties on per-
tion on the differentu; y(r)) provides insight into the in-  colation.
dependent contributions of the individual events to the Let us assum& independent diffusing particles in a Eu-
MFPT [4]. clidean space. Then a length scaléN) is imposed on the
Earlier studies of the properties ¢fu; (1))}, based on  system. For <r(N) the mean arrival timésu y(r)) should
solving the diffusion equation with absorbing boundaries,scale according tf10]
were done for one-dimensional systeff§ and using renor-
malization approach for deterministic fractd]. In what (wan(r))=rlv, @
follows we generalize the problem and provide a formulation, ;o re in a discrete systemis the ratio of a length given in

which is independent of the underlying environement. Weig s of the lattice constant and the corresponding elemen-

exem_plify our approach by using ran_dom walk trails,_ .Selftary step time unit. Equatiofl) follows from the assumption
avoiding walk structures, and percolation clusters at critical hat among a sufficiently large number of random walkers

ity, the latter being characterized by complicated structureg o can find on average one walker which reaches the dis-

having loops and dangling ends. It has been shown thgh,.or ynscattered10]. In the continuum description en-

transport properties on percolation can be treated CONVey s 1 assuming a finite velocity which is given by ratio of
niently in terms of the topological distan¢e,8]. The topo- 100" free path and the averaged scattering time. rFor
logical distance” is defined as the length of the shortest path>r (N)

(3 il

connecting two sites on a fractal that are separated by the
Euclidean distance. It scales with the Euclidean distance (pan(r)y=g(N)r?, 2
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which follows from the general solution of the diffusion

equation where plays the role of distance between ftado- ‘ | ”"I" " L

sorbing boundaries[5]. The critical distancer (N) for I.I l.l ”." I.l T ”.I
d-dimensional Euclidean space is obtained in a straightfor- 0 10000 20000 30000 40000 50000
ward way from calculating the probability of findingne Time t

random walker that travels the distancg(N) in time t

FIG. 1. Time series of the arrival timegu;n(r)), |

=r(N)/v, =1,...,50, of N=50 particles from a starting point on a three-
dimensional percolation cluster at criticality to distamcel5.

1
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whereP(r,t) is the probability density to be at distancat
timet andB=v/D. The factork/ Bc is the unit length of the 9)
system expressed by the diffusion const@anthe velocityv,
and a numerical constait of order 1. The normalization
condition [P(r,t)dr=1 for a fixed t vyields \g
=2k/T"(d/2). In order to derive the critical distancg(N),
we now define in Eq(3),

To zeroth order the arrival timguq (1)) becomes

~1p2
<M1’N(r)>:—ln()\0N)’ (10

p=(\oN) =771, 4
which in the one-dimensional case reproduces earlier results
with @=1-d/2 and r=(Br.(N))"L. Since p increases [5]-
monotonically withr andp(7—0)—0, we obtain, by taking We now extend the approach to the case where the move-
the logarithm of Eq(4), ment of the random walker is constrained to geometrically
disordered structures such as random walk trails, self avoid-
ing walk structures, and percolation clusters at criticality.
Figure 1 presents a series of the arrival time&Nef50 par-
ticles diffusing on a percolation cluster at criticality from an
where &(p), to be discussed below, obeys origin to a distance. Averaging a set of such time series for
lim, _.0&(p)/In(1/p)=0. Being interested in the behavior of a givenj leads to the observablg; (r)). Since our deri-
&(p) for p~0 (corresponding toN>1), we can expand vation is based on the concept of the topological space, in
&(p) in a series, by substituting E¢p) in Eq. (4). This leads, addition to percolation we consider, as examples for the rel-
in second order, to evance of the topological distancé, topologically linear
fractals such as trails of a random walk, where only sequen-
a tially created sites on the trail are considered connected, and
ép)=—a In[ln(l/p)][ 1- In(1] )}- (6)  self avoiding walk structures. The fractal dimension of the
p shortest path isl,,=1/2 for random work trailsd,;,= 3/4
for self avoiding walk structures, ardj,;,=1.35 for perco-
Substituting Eq(6) into Eq. (5) yields lation ind= 3 [7]. The probability density for a particle to be
located at time at a topological distance from its starting
point is asymptotically given b}7,8]

(p)=[In(Lp)+&(p)]™ %, ©)

fc(N)=(ﬁT(p))_12B_l( In(1/p) — aIn[In(1/p)]

N P(/,H)=PO1)/ % texd — (/IL(t)*]. (11
|- | ?

Hered, is the topological distance exponerzﬁ/=d\,/vl(d\fv

/
- - L —1), and L(t)=(D,t)*w is proportional to the mean
In order to satisfy both scaling regimes in E(B.and(2) we . . g4 . -
assume that s (1)) = (r(N)/V)F(r/r(N)) with f(x)=x cDem|caI distancé/(t)) [7]. For the Imgar casei/_—l,
for x<1 and'f(x)zxz for x>1. Accordingly, for r d;,=2 so that Eq(11) reduces to a Gaussian. Following our

>r.(N), earlier argument we now derive the mean arrival time
(m1n(2)) in topological space. We first obtain the critical
topological distance”((N) that divides the scaling behavior
of (u1n(4)) into two scaling regimes. We calculate the
probability of finding one out of the set &f random walkers
Inserting Eq.(7) into Eg. (8), expanding the result into a that arrives at the topological distangg(N) during timet
series and taking into account Ed) yields =/(N)Iv,,

=

(pan(n))y=(r(N)v)~tr2, 8
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1
N:(kp/,Bp)P(/-t)|/=/C(N),t=/C(N)/v/

A
v exd— By (N1, (12

(B N80

where,=k,8,/T'(d,/8,), B=(v,ID,) 5,14, and Ko/ Bp

is the unit length in the system expressed by the diffusion

constanD ., the velocityv,, and a numerical constaky of
order 1. As for the Euclidean case the veloaityis defined

by the ratio of the mean free path and the mean time between

collisions. If we introduce new variables,= (,Bp/’C(N))*l
and a,=1-d,/5,, Eq. (12) can be rewritten asp,
=(\N) = T;'pefl’fp. In an analogous way to Eq&)—(7)
we obtain

%p
|n(1/pp)] ) .
(13

/dN) =51 'n<1/Pp)—%'”['”(l/pp)]+1_

Since we expect(,gly,\,(/»://v/ for /</(N) and

(rin(2))=0y(N) /% for /= /(N) we require{uin(/))

=(/(N)Iv)E(717(N)) with f(x)=x for x<1 and
/

fp(x)zxdw for x>1. For/>/(N) this yields the scaling

relation

(Ban() = N)E 9oty )% (14

From Eq.(13) the arrival time(u, (<)), to order zero and
for fixed topological distance, becomes

_ e
D/l/dw

)y=———.
(man(2)) (In()\pN))deﬂ

(19

For linear fractals Eq(15) is the same as Eq10) with d
=1 and withr replaced by/. In order to derive the arrival
time in Euclidean space we denote ¢y/|r) the probability

that two sites on the fractal that are apart by a Euclideargio

distancer are separated by the topological distanteThe
mean arrival time w1 n(r)) for a fixed Euclidean distanae
can now be calculated by the convolution

<M1,N(f)>:f (man())e(/r)ds . (16)

The distribution functionp(/|r) of / for fixedr is given by

with  F(x)=x%x{ — C,x’],
17)

with 6=din/(dmin—1), g=1.35 andC,=0.8 for percola-
tion in d=3 [11]. The constant, is given by the normal-
ization condition [¢(/|r)d/=1 vyielding C;=[(dmin
—1)CY°Ir'(g/6)]1"*. Inserting Egs(15) and (17) into Eq.
(16) and performing the substitutior/—dx with X
=r//min yields

Ci [ 1
= 7F| T,

(pan(P)) = (Z(N)%ly Krdw, (19)
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FIG. 2. Double logarithmic scaling plot of the mean first pas-
sage time for the first out df diffusing particles{un(r)), on a
three-dimensional infinite percolation cluster at criticality. Shown
are (uin(r)) for Euclidean distances=15 (squares and r =20
(filled circles with d,,=3.55, and ., n(#)) for chemical distances
/=40 (filled squares and /=60 (circles with d/=2.67. The
slope=1.62 is in good agreement with Eq45) and(18). The data
for the fixed chemical distances have been shifted up.

with K=C5*'°I'((g—d,,)/8)/T'(g/5) which is numerically

of order 1. The comparison of Eq4.4) and(18) reveals that

the arrival times for fixed” and for fixedr show the samél
dependence. This is demonstrated in Fig. 2 where the nu-
merical results of our simulation @f; n(#)) and(uqn(r))

are plotted logarithmically versus k and show the same
slope. The expliciN dependence of the mean arrival times is
therefore determined by the anomalous diffusion exponent
d\,/v in topological space and not by the exponegpt{6]. The
latter result does hold for the Sierpinski gasket whexg,

=1 and thereforel/,=d,,.

Finally, we use Eq(14) to derive an asymptotic expres-

n for the numbeBy(t) of distinct sites visited by inde-
pendent diffusing particles on a random self similiar struc-
ture. We argue that the mean longest Euclidean distance
Rn(t) reached by any of thBl independent random walkers
during timet should be proportional to the distanceat
which the first out of theN walkers arrives at timet

=(u1n(r)) [6]. According to Eq.(18) this leads toR}"(t)

~t/ (N) D=t Indv/v‘l()\pN). Since the trail of a random
walk is compact for media with spectral dimensial
=2d//d\',/v<2 [12], as it is the case for percolation th=2
andd=3, the number of distinct visited siteS,(t), scales

asSy(t)= Rﬂ,f(t) , SO that

/
Sn(t)~ (In X\ pN) (52~ 1pds2 (19

The numerical results of our simulation f&8(t) on three-
dimensional percolation clusters are shown in Figs. 3 and 4.
While Fig. 3 shows the data in an unscaled form for different
values ofN, the data collapse in Fig. 4 strongly supports the
scaling behavior given by Eq19).
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FIG. 3. Number of distinct site§y(t) visited by N random FIG. 4. The same data as in Fig. 3 but in a scaling form accord-

walkers on a three-dimensional infinite percolation cluster at criti-ing to Eq.(19) with yE(dSIZ)(dV/V— 1). The data collapse and the
cality. Plotted is I1iSy(t)) versus In{) for N=16 (circles, N=27 slope=0.68 support Eq(19), sinceds~1.38 for the critical perco-
(filled squares N=20 (filled circleg, N=2*3 (triangles, and N lation ind=3 [7].

=216 (squares

also derived the mean numbgy(t) of new sites visited in
such systems. Botfy; (1)) andSy(t) are characterized by

In summary, we have introduced expressions for the me e anomalous diffusion expon in topological space.

arrival time of the first out oN independent random walkers
(m1n(r)) in ordered and in disordered systems. This quan- We thank Arik Bar-Haim and Shlomo Havlin for fruitful
tity should be closely related to experiments which are ableliscussions. The support of the German Israeli Foundation
to follow single events in many particle systems. We haveGIF) is gratefully acknowledged.
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